Sign-In Here

Jr. BME Program

JAVA PROGRAMMING

Dean Zepeda

Agenda

Intro!

01

- Who I am
- What I do

Why Java?

02

- APCSA
- Data Structures
- Translate to other languages

03

Objectives

- Syntax & Structure
- Functions & Commands
- Multi-function Code
- CHALLENGE!

Java Syntax

- Very Structured
- Can get "rambly"

 Variable types must be defined Int, string, double, etc... • Uses a compiler • Whitespace does NOT matter Denotation with brackets etc... • Need a SEMICOLON (;) after each line Sub-functions are denoted by periods

Similar to C (carries over in languages)

About Our Project

• Go to

tutorialspoint.com/compile_java_online.php

- Alternative Options
 - Google: "tutorialspoint coding ground" → search "java" → click "online java compiler"
 - https://onecompiler.com/java

This is called an IDE, integrative development environment. Since it is online, it is more limited but can run simple programs and test code functions!

Open the Online IDE

It should look like this!

Tutorialspoint Online Java Compiler 🖉		
© Execute ♀ Beautify ∞ Share Source Code	≥ Terminal	
<pre>1 /* Online Java Compiler and Editor */ 2 - public class HelloWorld{ 3 4 - public static void main(String []args){ 5 System.out.println("Hello, World!"); 6 } </pre>		
7 }		

What am I looking at?

Output, scanner, error statements, etc...

How to run Code

public class HelloWorld { public static void main (String[] args) { System.out.println ("Hello World");

- the code will run from

Try it Out!

Class Heading: public class NAME {} • Within this class, create the main function that

o public static void main (String[] args) {} • When you press "Execute," anything in the main(String{} args) brackets will run

Some Basic Syntax

Denote Comments with double slash

// This will start a comment
*/ This is a multi-line comment */

Printing to system terminal

System.out.println(BLAH)
Use apostrophes if BLAH is a string

 Don't use apostrophes if BLAH is a variable

1 -	public class He
2	
3 -	public stat
4	System.c
5 -	
6	this is
7	i am so
8	unlike t
9	
10	}
11	}

lloWorld{

tic void main(String []args){
out.println("blah blah"); //this is a comment

a multi-line comment cool cuz i can comment multiple lines the double slash

		 A variable
1	/* Online Java Compiler and Editor */	
2 -	<pre>public class HelloWorld{</pre>	 defin
3 4 -	<pre>public static void main(String []args){</pre>	be us
5	<pre>int num1 = 69; //integer variable "num1" has value 69</pre>	
6	<pre>double num2 = 3.14; //double variable "num2" has value 3.14</pre>	• Primitive
7	<pre>float num3 = 4.20; //float variable "num3" has value 4.20</pre>	o int (in
8	<pre>char char1 = 'E'; //character variable "char1" has value 'E'</pre>	° int (n
9	<pre>boolean isSmart = true; //boolean variable "isSmart" has value true</pre>	o doub
10	<pre>String hello = "hello"; //string variable "hello" has value "hello"</pre>	
11	//note how string must be capitalized and the value is in quotation marks	 float
12	}	
13	}	o char

- - e stores information
 - ed with a data type before they can sed (initialization):
 - data types (predefined by Java) nteger)

 - le (64 bit decimal number)
 - (32 bit decimal number)
 - (character)
 - boolean (true/false)
 - Non-primitive data types (call methods)
 - String (words) *special case
 - NAME = value;
 - int num = 69;
 - Think dishware and food

Variables and Data Types

Using Variables

```
1 - public class HelloWorld{
 2
         public static void main(String []args){
 3 -
            int num1 = 69;
 4
            System.out.println(num1); //prints out the value of num1, which is 69
 5
            int num2 = 420;
 6
            int ans1 = num1 + num2; //adds variables num1 and num2, assigns answer to variable ans
 7
            System.out.println(ans1); //prints out the ans variable
 8
            System.out.println(num1 + num2); //prints out the value of num1 + num2, but doesn't save
 9
            double ans2 = num2 / num1; //divides num2 by num1, saves answer as double b/c decimal
10
11
            System.out.println(ans2);
            int ans3 = num2 / num1; //divides num2 by num1, forces answer to be an integer
12
            System.out.println(ans3);
13
14
15
    }
```

- Once variables are initialized, they can be called on simply by using their name (no need to put the type beforehand)
- Variables can be printed: System.out.println(VARIABLE);
- Variables can be used to do operations like math. If you want to store data, the answers must be set to a variable

 \bigcirc

 Math operators: • Add: + Subtract: - Multiply: * Divide: / • Other math operations will need to import the math library (next couple slides)

Keep in Mind!

1 - import java.lang.Math.*; 2 public class HelloWorld{ 3 public static void main(String []args){ 4 int num1 = 69;5 System.out.println(num1); 6 num1 = 420; //reassign num1 to 420 7 System.out.println(num1); 8 num1 = num1 / 6; //divide num1 by 6 and reassign num1 9 System.out.println(num1); 10 11 12

- No need to re-initialize variables
 - Just call on their names!
- You can assign new values to variables with the equal sign
 - \circ If int blah has already been initialized to 4, it can be reassigned to a different value: blah = 69;
 - Variables can call on themselves: blah = blah + 1;

YOU TRY!

- Practice making initializing variables of different data types and doing math operations with them
- Raise your hand for any errors, since there can be very specific number conversion errors and whatnot
 - A volunteer will come help!
- Main Goal:
 - Write code to crunch some numbers
 - Print the math results to the terminal

X

STRINGS

```
1 - import java.lang.Math.*;
2 public class HelloWorld{
3
        public static void main(String []args){
4 -
           String word1 = "BMES";
5
           String word2 = " is very ";
6
           System.out.println(word1+word2+"cool.");
7
8
   }
9
```

- Strings are a non-primitive data type; they are technically another library, but already included into Java (no need to import)
- MUST INITIALIZE WITH A CAPITAL
- Strings can concatenate (add) with the +: System.out.println(STR1 + STR2); which can make printing different things very nice
- Strings can take in variables, or manually add with quotations

STRINGS CONT...

1 -	<pre>import java.lang.Math.*;</pre>
2 -	<pre>public class HelloWorld{</pre>
3	
4 -	<pre>public static void main(String []args){</pre>
5	<pre>String word1 = "BMES";</pre>
6	<pre>String word2 = "UCI anteaters";</pre>
7	<pre>int wordLength = word1.length(); //how long</pre>
8	<pre>System.out.println(wordLength);</pre>
9	<pre>boolean hasWord = word2.contains("ant"); //</pre>
10	<pre>System.out.println(hasWord);</pre>
11	}
12	}

- Strings have their own methods (like the Math library) that can be called on from the library: • STRINGNAME.METHOD();
- Certain methods will return certain values
 - .length() returns an int of how long the string is
 - .contains() returns a true/false if the string contains a certain sequence of characters

it is

has word "ant"?

true

Scanners

1 -	<pre>import java.lang.Math.*;</pre>
2	<pre>import java.util.Scanner;</pre>
3 -	<pre>public class HelloWorld{</pre>
4	
5 -	<pre>public static void main(String []args){</pre>
6	<pre>Scanner scan = new Scanner(System.in);</pre>
7	<pre>System.out.println("Enter something.");</pre>
8	<pre>String userInput = scan.next();</pre>
9	<pre>System.out.println("You typed: "+userInput);</pre>
10	}
11	}

- The scanner allows us to take in user input with our code
- Must import (just like the Math library):
 - import java.util.Scanner;
- Initialize before using:
 - Scanner NAME = new Scanner(System.in);
- Calling .next(); will take in the string entered into the terminal

Enter something. bruh You typed: bruh

Scanners + Math

1 -	<pre>import java.lang.Math.*;</pre>
2	<pre>import java.util.Scanner;</pre>
3 -	<pre>public class HelloWorld{</pre>
4	
5 -	<pre>public static void main(String []args){</pre>
6	<pre>Scanner scan = new Scanner(System.in);</pre>
7	<pre>System.out.println("Enter a number.");</pre>
8	<pre>double userInput = scan.nextDouble(); //look for next double input</pre>
9	<pre>double ans1 = Math.sqrt(userInput); //square root function</pre>
10	<pre>System.out.println("Square root of "+userInput+" equals "+ans1);</pre>
11	}
12	}

- Calling .nextInt() will take in the next integer, .nextDouble() the next double, etc
- Inputting anything else will result in an ERROR
- These can be used for math operations dictated by the user
- BE CAREFUL OF VARIABLE TYPES!!!!

Enter a number.

69

Square root of 69.0 equals 8.306623862918075

YOU TRY!

- Using the scanner and math operations/methods, try and program an linear equation solver (y = mx + b). Make it so that you have to input the variables m, x, and b, and then the code spits out the value of y into the terminal. • Hint: Order of operations matters, use parentheses to help Can use any data type, but using double helps account for decimals
- **Bonus:** Try and make the code give input prompts (i.e. "Please input the variable m", etc.) and output nicely (i.e. "Your answer is: ") using strings and concatenation

• Challenge: If you finish early, try doing it for different types of equations

- Quadratic: $ax^2 + bx + c = 0$
- \circ 2x2 Determinant: determinant = ad bc
- Magnetic Force: $F = q^*v^*B^*sin(\theta)$

Answer!

- 1 import java.lang.Math.*;
- import java.util.Scanner; 2
- 3 public class HelloWorld{
- 4

public static void main(String []args){ 5 = Scanner scan = new Scanner(System.in); //initialize scanner 6 System.out.println("Enter the slope (m):"); //prompt slope 7 double mVal = scan.nextDouble(); //look for next double input to be slope 8 System.out.println("Enter the x value:"); //prompt x value 9 double xVal = scan.nextDouble(); //look for next double input to be x value 10 System.out.println("Enter the y-intercept (b):"); //prompt y intercept 11 double bVal = scan.nextDouble(); //look for next double input to be y intercept 12 double yVal = (mVal * xVal) + bVal; //solve for y value 13 System.out.println("The y value is: "+yVal); //print out answer 14 15

16 }

Enter the slope (m): 69 Enter the x value: 21 Enter the y-intercept (b): 420 The y value is: 1869.0

BREAK TIME!

Conditionals

- Conditionals (if/else statements) are used to compare values and make decisions based off them
- This allows code to do certain things based on given values

• Example:

- You eat a chili pepper
- \circ If it's not to spicy \rightarrow eat another
- \circ Else if it's spicy but manageable \rightarrow consume something to cool down
 - If you're craving something sweet \rightarrow eat ice cream
 - **Else** \rightarrow drink milk
- \circ Else \rightarrow get help

lots of words ahead

Conditionals Cont...

- Conditionals use booleans to make decisions (conditions have to be answered with a true or false)
- If true, do what's specified. Else, move on

• Operators:

- For equivalency, use double equal signs: ==
- For size comparisons, use: >, <, >=, <=
- AND operator: &&. OR operator: I, NOT operator: I or !=
- Use parentheses to specify comparisons
 - (variable1 >= variable2) && (variable1 != 0)
- Syntax:
 - if (CONDITIONAL) {DO CODE} //main case
 - else if (CONDITIONAL) {DO CODE} //secondary case, can add as many more else if as needed
 - else {DO CODE} //note how this does not have a conditional, can only have 1 else per chain

Conditionals Example

1 -	<pre>import java.lang.Math.*;</pre>
2	<pre>import java.util.Scanner;</pre>
3 -	<pre>public class HelloWorld{</pre>
4 -	<pre>public static void main(String []args){</pre>
5	<pre>Scanner scan = new Scanner(System.in); //initialize scanner</pre>
6	<pre>System.out.println("Enter an integer:"); //prompt question</pre>
7	<pre>int userInput = scan.nextInt(); //looks for next integer</pre>
8 -	<pre>if (userInput == 69) { //if the input was 69</pre>
9	<pre>System.out.println("Super funny number.");</pre>
10	}
11 -	<pre>else if (userInput == 420 userInput == 21) { //if input wa</pre>
12	<pre>System.out.println("Funny number.");</pre>
13	}
14 -	<pre>else { //any other number</pre>
15	<pre>System.out.println("Not a funny number.");</pre>
16	}
17	}
18	}

0

>_ Terminal

Enter an integer:

69

Super funny number.

>_ Terminal

Enter an integer: 21

Funny number.

➤ Terminal

Enter an integer: 2023 Not a funny number.

s 21 or 420

YOU TRY!

- Using the code from the last activity (the one where you programmed the equation solver for y = mx + b) and use conditionals to analyze the y value
- Have the code print out if the y value is positive, negative, or zero • **Hint:** use an if, else if, and else statement (though if/else if/else if can also work)
- If your y value was defined as a double, typecast it to an integer to make comparisons (comparing doubles can get wonky)
 - Typecasting forces your new number to become the new type
 - Do so by initializing a new variable to with the new type to the old variable with the parenthesis of the new type in front: (NEWTYPE) OLDVARIABLE
 - yVal = 69.69;
 - Int newVal = (int) yVal;

Answer!

1 -	<pre>import java.lang.Math.*;</pre>
2	<pre>import java.util.Scanner;</pre>
3 -	<pre>public class HelloWorld{</pre>
4 -	<pre>public static void main(String []args){</pre>
5	<pre>//pretend the code for the y=mx+b is up here</pre>
6	<pre>double yVal = 69.69; //pretend this was the answer</pre>
7	<pre>int newY = (int) yVal; //typecast to integer for compa</pre>
8 -	<pre>if (newY > 0) { //if greater than 0, positive</pre>
9	<pre>System.out.println("Positive value.");</pre>
10	}
11 -	<pre>else if (newY < 0) { //if less than 0, negative</pre>
12	<pre>System.out.println("Negative value.");</pre>
13	}
14	<pre>else { //must be 0 by default, but can also use else i</pre>
15	<pre>System.out.println("Zero value.");</pre>
16	}
17	}
18	}

0

rison

f (newY == 0)

Positive value.

Methods

- Methods are essentially functions, where you can call them, plug in values, and get an output that can be used for computation
- Remember .pow() and .contains()? Those are all methods. The Math and String classes use the dots to call the methods they have access to like folders within a cabinet drawer
- We can create our own methods within a program that are custom
- Methods can get more complex and specific when classes are involved, so we will just concern ourselves with methods in a single class

public class Main { //for methods within the static void main public static void main(String[] args) {

//code here

public static TYPE NAME(PARAMETERS) { //code here

SYNTAX

Methods Syntax cont...

- Methods can take in parameters (the inputs) within the parenthesis. Parameter variables are specific to the method (more on this later)
- Methods can return values (the outputs).
 - If the method spits out a value, it must return a variable that is the same type as the TYPE in the header
 - If it doesn't return anything, the type is "void"
- For technical reasons, methods must have the "static" in the header since they are within the same class as the **public static** void main(String[] args)
- Methods are called in the main code with their name followed by the parameters

//code here return VARIABLE;

public static void NAME(PARAMETER) { //code here

public static TYPE NAME(PARAMETER) {

Method Example

1 -	<pre>import java.lang.Math.*;</pre>
2	<pre>import java.util.Scanner;</pre>
3 -	<pre>public class HelloWorld{</pre>
4 -	<pre>public static void main(String []args){</pre>
5	<pre>//pretend the code for the y=mx+b is up here</pre>
6	<pre>double yVal = 69.69; //pretend this was the answer</pre>
7	<pre>int newY = (int) yVal; //typecast to integer for compa</pre>
8 -	<pre>if (newY > 0) { //if greater than 0, positive</pre>
9	<pre>System.out.println("Positive value.");</pre>
10	}
11 -	<pre>else if (newY < 0) { //if less than 0, negative</pre>
12	<pre>System.out.println("Negative value.");</pre>
13	}
14	<pre>else { //must be 0 by default, but can also use else i</pre>
15	<pre>System.out.println("Zero value.");</pre>
16	}
17	}
18	}

rison

(newY == 0)

Positive value.

0

NOTE: Global Variables and Methods

- Global variables are variables that are initialized within the class, but outside the public static void main(String[] args)
- Global variables can be accessed by any method within the class
- Void methods are useful for when you want to manipulate these global variables, since they don't need to output anything
 - However, you can do this just by calling the variable in the main method or any other one
 - This has better applications in projects that utilize multiple classes and you don't want other classes to affect the global variables within the class (advanced)
- Static methods/variables belong to their respective classes; cannot be altered or accessed from outside the class

NOTE: Example

 \bigcirc

1 - import java.lang.Math.*; import java.util.Scanner; 2 3 - public class HelloWorld{ static int global1 = 2; //these are global variables 4 5 public static void main(String []args){ 6 -System.out.println(global1); //prints global variable 7 global1 = 3; //directly changes global variable 8 System.out.println(global1); 9 changeGlobal(5); //uses method to change global variable 10 System.out.println(global1); 11 12 public static void changeGlobal(int newNum) { 13 global1 = newNum; //sets global variable to input 14 } 15 16

2

3

5

CHOICE

Challenge or Learn Something Else?

Challenge Questions

Easy Challenge

- Create a program that takes in user inputs of triangle side lengths and/or angles and outputs a bunch of cool triangle calculations
 - Area
 - Perimeter
 - Trigonometric values
 - You can find more cool triangle stuff by Googling "cool triangle" equations"
- Use the Scanner class and methods to create your program

Hard Challenge

- equation

 Create a program that asks a user what type of equation they want to solve, then asks for the appropriate inputs based on which equation the user indicated

• The program should use conditionals to filter through the equation options, then call individual methods for each

 Use concatenation techniques to make things look nice in the terminal